DIPFEJK DETEKTORI PALI NA TESTU: Istraživači pozivaju na hitna poboljšanja
NIJEDAN od 16 vodećih detektora ne može pouzdano da identifikuje lažne fotografije u stvarnom svetu, otkrili su australijski i južnokorejski istraživači.

Foto Shutterstock
Nedavno objavljeni rad na portalu arXiv, koji su zajednički izradili australijska nacionalna naučna agencija CSIRO i južnokorejski Univerzitet Sungkjunkvan, otkrio je ozbiljne ranjivosti u postojećim dipfejk (deepfake) detektorima.
Istraživanje je procenilo 16 vodećih detektora i pokazalo da nijedan od njih nije u stanju da pouzdano identifikuje deepfake u stvarnim uslovima.
Metodologija istraživanja
Istraživači su razvili okvir u pet koraka za procenu alata koji uključuje tip dipfejka, metodu detekcije, pripremu podataka, obuku modela i validaciju.
Pritom su identifikovali i 18 faktora koji utiču na tačnost detektora koji su testirani u različitim scenarijima, uključujući crnu, belu i sivu kutiju.
Postojeći detektori pokazuju ozbiljne slabosti, posebno kada se suočavaju s radovima koji se ne nalaze u njihovim treniranim podacima, zapažaju istraživači.
Na primer ICT (Identity Consistent Transformer), detektor treniran na licima poznatih osoba, nije bio efikasan u detekciji dipfejka s nepoznatim osobama.
Detektori su pali na ispitu, nebitno da li je u pitanju "synthesis deepfake" koji generiše potpuno nova sintetička lica, "faceswap deepfake" radovima u kojima se lice jedne osobe zamenjuje drugim ili " reeanactment deepfake" u kojem se zadržavaju crte lica neke osobe, ali se menjaju njeni izrazi.
Integracija podataka
Istraživači pozivaju na hitna poboljšanja, predlažu razvoj više detektora i korišćenje različitih izvora podataka kako bi se poboljšala tačnost detekcije.
Naglašavaju i potrebu integracije audio, tekstualnih i meta podataka u modele za detekciju, kao i primenu strategija poput fingerprintinga, odnosno ugradnje veštačkih i GAN otisaka u slike i video snimke kako bi se bolje pratilo poreklo dipfejka.
Prva metoda uključuje ugradnju jedinstvenih oznaka u trening podatke generativnih modela koji se prepoznaju u generisanim dipfejk radovima, a druga na prirodne oznake koje generativni modeli ostavljaju u generisanim sadržajima.
(b92)

MOLDAVIJA DONELA ODLUKU VEZANU ZA SRBIJU: Ograničili uvoz ove namirnice iz naše zemlje
VLADA Moldavije donela je odluku o privremenom ograničenju uvoza šećera iz Srbije, uz obrazloženje da na taj način želi da zaštiti domaću proizvodnju i stabilizuje tržište.
10. 10. 2025. u 13:22

RUSI OTKRILI ČIME SU SINOĆ GAĐALI UKRAJINU: "Odgovor na terorističke udare po civilnim objektima"
RUSKE oružane snage tokom noći izvele su masovni napad na energetske objekte koji napajaju vojno-industrijski kompleks Ukrajine, saopštilo je Ministarstvo odbrane Rusije.
10. 10. 2025. u 14:48

"OTEĆE VAM DECU! Mirjana Bobić Mojsilović upozorila roditelje
"ZATO, roditelji, dok još nije kasno, zgrabite svoju decu i zabavite ih sami!"
09. 10. 2025. u 10:15
Komentari (0)